Bulk FinFETs: Design at 14 nm Node and Key Characteristics

نویسنده

  • Jong-Ho Lee
چکیده

© Springer Science+Business Media Dordrecht 2016 C.-M. Kyung (ed.), Nano Devices and Circuit Techniques for Low-Energy Applications and Energy Harvesting, KAIST Research Series, DOI 10.1007/978-94-017-9990-4_2 Abstract In contrast to conventional 2-D MOSFETs, FinFETs are able to be scaled down to 20 nm and beyond, and have superior performance. There are two types of FinFETs:SOI FinFETs and bulk FinFETs. Bulk FinFETs are built on bulk-Si wafers, which have less defect density and are cheaper than SOI wafers, while also having better heat transfer rate to the substrate compared to SOI FinFETs. In 2011, Intel announced the world’s first 3-D transistors in the mass production of a 22 nm microprocessor (code-named Ivy Bridge). The 3-D transistors adopted by Intel are actually bulk FinFETs. In this chapter, we provide the design guidelines for bulk FinFETs at the 14 nm node, and compare bulk and SOI FinFETs in terms of scalability, parasitic capacitance, and heat dissipation. Decrease of the drain current by parasitic resistance in the source (S) and drain (D) regions is also addressed. Drain current fluctuation by single charge trap is studied in terms of the trap depth, trap position, and percolation path. In the design of 14 nm bulk FinFETs, a punch-through stopper at a position just under the S/D junction depth is required to suppress unwanted cross-talk between S and D. The peak concentration of the stopper needs to be 2–3 × 1018 cm−3. The S/D junction depth should be equal or slightly smaller than the height of fin body, defined from the surface of the isolation oxide region to the top of the fin body. Considering the short channel effect and drain current drivability, the reasonable doping concentration of uniformly doped fin body is 2–3 × 1017 cm−3. To keep the drain-induced barrier below 100 mV/V when the length between the S and D junctions is the same as the gate length (14 nm), the width of the fin body should be ~9 nm. Under the same doping concentration and geometry, both 14 nm SOI and bulk FinFETs have nearly the same I–V characteristics, which mean nearly the same scalability. Since thin fin bodies protruding from the substrate are easily depleted, the junction capacitance of the S/D to fin body can be reduced to similar or even lower values than that of SOI FinFETs. To achieve a similar heat transfer rate to the substrate as

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel 14-nm Scallop-Shaped FinFETs (S-FinFETs) on Bulk-Si Substrate

In this study, novel p-type scallop-shaped fin field-effect transistors (S-FinFETs) are fabricated using an all-last high-k/metal gate (HKMG) process on bulk-silicon (Si) substrates for the first time. In combination with the structure advantage of conventional Si nanowires, the proposed S-FinFETs provide better electrostatic integrity in the channels than normal bulk-Si FinFETs or tri-gate dev...

متن کامل

DESIGN OF 20 nm FinFET STRUCTURE WITH ROUND FIN CORNERS USING SIDE SURFACE SLOPE VARIATION

FinFET transistors have emerged as novel devices having superior controls over short channel effects (SCE) than the conventional MOS transistor devices. However, FinFET exhibit certain undesirable characteristics such as corner effects, quantum effects, tunneling etc. Usually, the corner effect deteriorates the performance by increasing the leakage current. In this work, the corner effect of Tr...

متن کامل

Analysis and Design of Finfet Based Variable Gain Amplifier

Comparison of analog figures-of-merit of FinFETs and MOSFETs reveals an interesting tradeoff in the analog/RF design space. It is found that FinFETs possess the following key advantages over MOSFETs: reduced power dissipation, and better voltage gain without degradation of noise or linearity. This makes them attractive for low-frequency RF applications around 5 GHz, where the performance-power ...

متن کامل

Leakage Current And Dynamic Power Analysis Of Finfet Based 7t Sram At 45nm Technology

As technology is scaled down, the importance of leakage current and power analysis for memory design is increasing. In this paper, we discover an option for low power interconnect synthesis at the 45nm node and beyond, using Fin-type Field-Effect Transistors (FinFETs) which are a promising substitute for bulk CMOS at the considered gate lengths. We consider a mechanism for improving FinFETs eff...

متن کامل

Neutron-induced strike: Study of multiple node charge collection in 14nm FinFETs

FinFETs have replaced the conventional bulk CMOS transistors in the sub-20nm technology. One of the key issues to consider is, the vulnerability of FinFET based circuits to multiple node charge collection due to neutron-induced strikes. In this paper, we perform a device simulation based characterization study on representative layouts of 14nm bulk FinFETs in order to study the extent to which ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017